项目名称	深/浅海水下推进器的开发						
项目阶段	□研制	口试生产	□小批量生产	☑批量生产		□其他()
技术领域	先进制造				合作方式	双方商定	

项目简介:

根据流体力学特性以及使用环境的需要,现已形成适合0~6000m深度、功率从40~1000W的系列推进器。以计算流体力学为基础,通过对螺旋桨和导流罩的线型优化,自主编写Ka型、B型、D型等多款螺旋桨,及P19A型、JD型、DSN型等多款导流罩的设计程序,缩短了设计周期和研发成本,同时使得最大推进效率可达60~70%;结合不同深度的使用环境,推出了磁耦合和油密封两种密封方式的推进器,并在实际使用中验证了其可靠性高、推进效率好的特点;同时采用CFD手段针对每款推进器,均配套详细的性能计算分析报告,计算误差小于3%。

实施条件:

需要室内装配、测试场地,需要专用的测试水池及外场测试场地。如有条件,需配备加工机床和喷漆 厂房,便于大规模生产。

知识产权情况:

该成果已授权发明专利 2 项,实用新型专利 2 项:一种人造侧线阵列式压力梯度传感器,专利号:2016104882058;一种波光联合驱动海上长期观测系统,专利号:201910379717.4;一种仿生机器鱼尾部传动装置,专利号;ZL 2016 2 0656166.3;一种鲹科类仿生机器鱼,专利号;ZL 2016 2 056357.X。

成果照片:

